go to the AUS-e-TUTE homepage

Boyle's Law (Mariotte's Law) Chemistry Tutorial

Key Concepts

Please do not block ads on this website.
No ads = no money for us = no free stuff for you!

Graphical Representations of Boyle's Law

Consider an experiment in which a known amount of hydrogen gas in a syringe has a volume of 23 mL at atmospheric pressure (760 mm Hg or 1 atm or 101.3 kPa).

You then apply an external pressure of 912 mm Hg (1.2 atmospheres or 121.6 kPa) by pressing down on the plunger in the syringe.

The volume of hydrogen gas is then recorded as 19.2 mL.

You continue to apply external pressure by pushing the plunger down further, recording the volume of hydrogen gas as shown in the table below:

Pressure
(mm Hg)*
Volume
(mL)
Trend
760 23 Increasing the pressure applied to the plunger causes a reduction in the gas volume.

Decreasing the applied pressure increases the volume of the gas.

912 19.2
1064 16.4
1216 14.4
1368 12.8
1520 11.5
* A pressure of 760 mm Hg is equal to 1 atmosphere (atm) or 101.3 kilopascals (kPa)

If we plot these points on a graph, the graph looks like the one below:

volume
(mL)
Gas Volume versus Pressure

Pressure (mm Hg)

Note that this is not a linear relationship, the line in the graph is curved, it is not a straight line.

But look what happens if we multiply volume and pressure (P × V):

Pressure
(mm Hg)
Volume
(mL)
P × V Trend
760 23 1.75 × 104 P × V is a constant!

For this amount of gas at this temperature:

P × V = 1.75 × 104

912 19.2 1.75 × 104
1064 16.4 1.75 × 104
1216 14.4 1.75 × 104
1368 12.8 1.75 × 104
1520 11.5 1.75 × 104

For a given amount of gas at constant temperature we now we can write the equation:

P × V = constant

If we divide both sides of the equation by P, we get:

V = constant ×   1  
P

Recall that the equation for a straight line that runs through the point (0,0) is

y = mx

where m is the slope (or gradient) of the line

Then a graph of V against 1/P, should be a straight line with a slope (or gradient) equal to the value of the constant.

The table below shows what happens if we calculate 1/P for each volume, V, in the experiment above and then graph the results:

Volume
(mL)
Pressure
(mm Hg)
1/Pressure
(1/mm Hg)*
Comments
11.5 1520 6.6 × 10-4 As gas volume (V) increases, the value of 1/P increases.

As gas volume (V) decreases, the value of 1/P decreases.

12.8 1368 7.3 × 10-4
14.4 1216 8.2 × 10-4
16.4 1064 9.4 × 10-4
19.2 912 1.1 × 10-3
23 760 1.3 × 10-3

By plotting these points on a graph, we can see that the relationship is linear:

volume
(mL)
Gas Volume versus 1/Pressure

1/Pressure (1/mm Hg)

We now have a simple method for determining the value of the constant:

Recall that we can calculate the slope (gradient, m) of a straight line using two points on the line
m = (y2 - y1)
(x2 - x1)

Choosing the points (0.00094,16.4) and (0.0013,23)
m =   (23 - 16.4)  
(0.0013 - 0.00094)
  =   (6.6)  
(0.00036)
  = 1.8 × 104

and the equation for this straight line is

V = 1.8 × 104 × 1
P

This equation then allows us to calculate the volume of the gas at any pressure, as long as we use the same amount of gas and keep the temperature the same.

Let us say we have a specific amount of gas and keep the temperature constant, then initially at pressure Pi the gas has a volume of Vi and we know that:

PiVi = constant

If we maintain the same temperature and the same amount of gas, but change the pressure to Pf, then the new gas volume will be Vf, and

PfVf = the same constant

So, as we long as we use the same amount of gas at the same temperature:

PiVi = constant = PfVf

that is:

PiVi = PfVf

This means that if we know the initial conditions (Pi and Vi), and, we know the final pressure (Pf), we can calculate the final volume (Vf):

Vf = Pi × Vi
Pf

or we can calculate the final pressure (Pf) if we know the final volume (Vf):

Pf = Pi × Vi
Vf

Similarly, if we know the final conditions (Pf and Vf), and, we know the initial pressure (Pi), we can calculate the initial volume (Vi):

Vi = Pf × Vf
Pi

or we can calculate the initial pressure (Pi) if we know the initial volume (Vi):

Pi = Pf × Vf
Vi

Do you know this?

Join AUS-e-TUTE!

Play the game now!

Worked Example: Calculating the Final Pressure of a Gas Sample

Question : A certain mass of gas occupies a volume of 2.5 L at 90 kPa pressure.
What pressure would the gas exert if it were placed in a 10.0 L container at the same temperature?

Solution:

(Based on the StoPGoPS approach to problem solving.)

  1. What is the question asking you to do?

    Calculate final gas pressure
    Pf = ? kPa

  2. What data (information) have you been given in the question?

    Extract the data from the question:

    Conditions of the experiment: constant amount of gas at constant tempertaure.

    Vi = initial gas volume = 2.5 L
    Pi = initial gas pressure = 90 kPa
    Vf = final gas volume = 10.0 L

  3. What is the relationship between what you know and what you need to find out?
    Because the amount of gas and temperature are constant, we can use Boyle's Law:

    PiVi = PfVf

    Rearrange this equation by dividing both sides by Vf:

    PfVf
    Vf
    = PiVi
    Vf
    Pf = PiVi
    Vf

  4. Substitute in the values and solve for Pf
    Pf = PiVi
    Vf
      = 90 × 2.5
    10.0
      = 22.5 kPa
  5. Is your answer plausible?
    Consider that the volume has increased from 2.5 to 10, an increase of 10/2.5 = 4.
    If the volume increases 4 times, then the pressure must decrease and the new pressure will be 1/4 of the initial pressure, that is, 1/4 × 90 = 22.5 kPa
    Since this is the same value as we calculated above, we are reasonably confident that our answer is correct.
  6. State your solution to the problem "final gas pressure":

    Pf = 22.5 kPa

Do you understand this?

Join AUS-e-TUTE!

Take the test now!

Worked Example: Calculating the Final Volume of a Gas Sample

Question : 4.5 L of gas at 125 kPa is expanded at constant temperature until the pressure is 75 kPa.
What is the final volume of the gas?

Solution:

(Based on the StoPGoPS approach to problem solving.)

  1. What is the question asking you to do?

    Calculate final volume
    Vf = ? L

  2. What data (information) have you been given in the question?

    Extract the data from the question:

    Conditions: constant amount of gas and temperature.

    Pi = 125 kPa
    Vi = 4.5 L
    Pf = 75 kPa

  3. What is the relationship between what you know and what you need to find out?
    Because the amount of gas and temperature are constant, we can use Boyle's Law:

    PiVi = PfVf

    Rearrange this equation by dividing both sides by Pf:

    PfVf
    Pf
    = PiVi
    Pf
    Vf = PiVi
    Pf

  4. Substitute in the values and solve for Vf

    Vf = PiVi
    Pf
      = 125 × 4.5
    75
      = 7.5 L

  5. Is your answer plausible?
    Pressure has decreased by a factor of 75/125 = 0.6
    Therefore volume must have increased by a factor of 1/0.6 = 1.667
    Final volume must be 1.667 × 4.5 = 7.5 L
    Since this value is the same as the one we calculated above, we are reasonably confident that our answer is plausible.
  6. State your solution to the problem "final gas volume ":

    Vf = 7.5 L

Can you apply this?

Join AUS-e-TUTE!

Do the drill now!