go to the AUS-e-TUTE homepage

Charles' Law Chemistry Tutorial

Key Concepts

Please do not block ads on this website.
No ads = no money for us = no free stuff for you!

Charles' Law Concepts

Consider the following experiment to measure the expansion of hydrogen gas:

Volume and Temperature of a Quantity of H2(g) at 100 kPa
Volume
(mL)
Temperature
(oC)
Trend
25 -23 As volume increases, temperature increases.

As volume decreases, temperature decreases.

As temperature increases, volume increases.

As temperature decreases, volume decreases.

30 27
35 77
40 127.5
45 177

Is there a simply relationship between the temperature of a gas in °C and its volume?
Let's try dividing volume by temperature and see, the results are in the table below:

Volume and Temperature of a Quantity of H2(g) at 100 kPa
Volume
(mL)
Temperature
(oC)
V ÷ T(°C)
25 -23 -1.1
30 27 1.1
35 77 0.45
40 127.5 0.31
45 177 0.25

No, there doesn't appear to be a simple relationship between the volume of the gas and its temperature in °C.

But, what happens if we convert all the temperatures in °C to temperatures in kelvin (K)?
The table below shows the temperature conversions:

Volume and Temperature of a Quantity of H2(g) at 100 kPa
Volume / mL Temperature / oC Temperature / K
T(K) = 273 + T(°C)
25 -23 250
30 27 300
35 77 350
40 127.5 400.5
45 177 450

Is there now a simple relationship between volume of gas and its temperature in Kelvin?
The table below shows the results of dividing the volume of a gas by its temperature in Kelvin:

Volume and Temperature of a Quantity of H2(g) at 100 kPa
Volume / mL Temperature / K
T(K) = 273 + T(°C)
V ÷ T (K)
25 250 0.1
30 300 0.1
35 350 0.1
40 400.5 0.1
45 450 0.1

Yes, we can now see a clear relationship between the volume of this gas (V) and its temperature in Kelvin (T) at a constant pressure of 100 kPa:

V ÷ T = 0.1

In general we could write:

V ÷ T = "a constant"

By rearranging this equation we can write:

V = "a constant" × T

Which is the equation for a straight line that goes through the origin (0,0) and has a slope (or gradient) equal to the value of "a constant".

The points are plotted and the line is extrapolated back to 0 (volume = 0 mL and temperature = 0 K) in the graph below:

volume (mL) Expansion of Hydrogen Gas at Constant Pressure

temperature (K)

The graph of gas volume against temperature is a straight line.
We say that there is a linear relationship between the volume of a gas and its temperature at constant pressure.

Extrapolation of the line back to (0,0) assumes that at temperatures below -23oC (250 K), the linear relationship between volume and temperature will be maintained.

It is unlikely that this assumption will hold at very low temperatures for 100 kPa pressure as the hydrogen is likely to condense into a liquid first.

The extrapolation of the graph actually suggests that at 0 K an ideal gas has no volume (0 mL on our graph).

From the graph we see that:

Do you know this?

Join AUS-e-TUTE!

Play the game now!

Calculations : Vi/Ti = Vf/Tf

Consider an experiment in which we have a known quantity of gas in vessel such as a syringe in which the piston (plunger) can move freely up or down in order to change the volume occupied by the gas.

In the beginning of an experiment, a known amount of gas at a specified pressure has

volume = Vi

temperature = Ti

In the beginning of the experiment,

Vi ÷ Ti = constant = k

The temperature of the gaseous system is then changed (the system is heated or cooled) while constant pressure is maintained.

At the end of the experiment, the gas will have a different volume and a different temperature:

volume = Vf

temperature = Tf

As long as the amount of gas has not changed, and the pressure has not changed, then

Vf ÷ Tf = the same constant as at the beginning of the experiment = k

Therefore Vi ÷ Ti = k = Vf ÷ Tf

So Vi ÷ Ti = Vf ÷ Tf

This equation can then be rearranged to find the volume or temperature of a known amount of gas at specified pressure during the course of an experiment:

Find the initial volume, Vi

Vi = Ti × Vf
Tf

Find the final volume, Vf

Vf = Vi × Tf
Ti

Find the initial temperature, Ti

Ti = Tf × Vi
Vf

Find the final temperature, Tf

Tf = Ti × Vf
Vi

Do you understand this?

Join AUS-e-TUTE!

Take the test now!

Worked Example of Charles' Law to Calculate Volume of Gas

Question : A sample of unknown gas had a volume of 1.2 L at 100oC and 100 kPa pressure.
What would its volume be at 0oC at the same pressure?

Solution:

(Based on the StoPGoPS approach to problem solving.)

  1. What is the question asking you to do?

    Calculate final volume of gas
    Vf = ? L

  2. What data (information) have you been given in the question?

    Extract the data from the question:

    Conditions: constant amount of gas and pressure (100 kPa).

    Vi = 1.2 L

    Ti = 100°C
    Convert temperature in °C to K
    Ti + 273 = 100 + 273 = 373 K

    Tf = 0°C
    Convert temperature in °C to K
    Ti + 273 = 0 + 273 = 273 K

  3. What is the relationship between what you know and what you need to find out?
    Assume ideal gas behaviour.

    Because the amount of gas and pressure are constant, we can use Charles' Law:

    Vi
    Ti
    = Vf
    Tf

    Multiply both sides of the equation by Tf:

    Tf × Vi
    Ti
    = Tf × Vf
    Tf
    Tf × Vi
    Ti
    = Vf

  4. Substitute in the values and solve for Vf

    Vf = Tf × Vi
    Ti
      = 273 ×1.2
    373
      = 0.88 L

  5. Is your answer plausible?
    Consider that the gas is made up of particles in constant motion.
    If you cool the gas down from 100°C to 0°C the particles will have less kinetic energy, they move about less. If the volume that contained the gas was fixed (constant), the pressure exerted by the gas particles would be less.
    But, in our example, the volume of the container is not fixed (since we are asked to calculate the new volume), so, in order to maintain the same gas pressure, the volume of the container must decrease.
    Our calculated final volume of gas (0.88 L) is less than the initial volume of gas (1.2 L), so we are reasonably confident that our answer is plausible.
  6. State your solution to the problem "calulate final volume of gas":

    Vf = 0.88 L

Can you apply this?

Join AUS-e-TUTE!

Do the drill now!

Worked Example of Charles' Law to Calculate Temperature of Gas

Question : A helium filled balloon had a volume of 75 L at 25oC.
To what does the temperature, in Kelvin, need to be raised in order for the balloon to have a volume of 100 L at the same pressure?

Solution:

(Based on the StoPGoPS approach to problem solving.)

  1. What is the question asking you to do?

    Calculate final temperature
    Tf = ? K

  2. What data (information) have you been given in the question?

    Extract the data from the question:

    Conditions: constant amount of gas and pressure.

    Vi = 75 L

    Ti = 25°C
    Convert temperature in °C to K
    Ti + 273 = 25 + 273 = 298 K

    Vf = 100 L

  3. What is the relationship between what you know and what you need to find out?
    Assume ideal gas behaviour.

    Because the amount of gas and pressure are constant, we can use Charles' Law:

    Vi
    Ti
    = Vf
    Tf

    Multiply both sides of the equation by Tf:

    Tf × Vi
    Ti
    = Tf × Vf
    Tf
    Tf × Vi
    Ti
    = Vf

    Multiply both sides of the equation by Ti:

    Ti × Tf × Vi
    Ti
    = Ti × Vf
    Tf × Vi = Ti × Vf

    Divide both sides of the equation by Vi

    Tf × Vi
    Vi
    = Ti × Vf
    Vi
    Tf = Ti × Vf
    Vi

  4. Substitute in the values and solve for Tf

    Tf = Ti × Vf
    Vi
    Tf = 298 × 100
    75
      = 397 K

  5. Is your answer plausible?
    Consider: V ∝ T (in K)
    Increasing the volume of gas increases its temperature (in order to maintain constant pressure).
    Double the the volume and the temperature (in K) doubles.
    In the question the volume has increased by a factor of 100/75 = 1.333
    So the temperature must have increased by a factor of 1.333
    That is, final temperature = 1.333 × 298 = 397 K
    Since this is the same value as we calculated above, we are reasonably confident that our answer is plausible.
  6. State your solution to the problem "calculate final temperature in K ":

    Tf = 397 K

Can you apply this?

Join AUS-e-TUTE!

Take the exam now!


1. Deviations from Ideal Gas Behaviour:

As a Real Gas is cooled at constant pressure from a point well above its condensation point, its volume begins to increase linearly.
As the temperature approaches the gases condensation point, the line begins to curve (usually downward) so there is a marked deviation from Ideal Gas behaviour close to the condensation point.
Once the gas condenses to a liquid it is no longer a gas and so does not obey Charles' Law at all.
Absolute zero (0K, -273oC approximately) is the temperature at which the volume of a gas would become zero if it did not condense and if it behaved ideally down to that temperature.